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Preface 
The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-based 

Practice Centers (EPCs), sponsors the development of evidence reports and technology 

assessments to assist public- and private-sector organizations in their efforts to improve the 

quality of health care in the United States. The reports and assessments provide organizations 

with comprehensive, science-based information on common, costly medical conditions and new 

health care technologies and strategies. The EPCs systematically review the relevant scientific 

literature on topics assigned to them by AHRQ and conduct additional analyses when 

appropriate prior to developing their reports and assessments. 

Strong methodological approaches to systematic review improve the transparency, 

consistency, and scientific rigor of these reports. Through a collaborative effort of the Effective 

Health Care (EHC) Program, AHRQ, the EHC Program Scientific Resource Center, and the 

AHRQ Evidence-based Practice Centers have developed a Methods Guide for Comparative 

Effectiveness Reviews. This Guide presents issues key to the development of Systematic 

Reviews and describes recommended approaches for addressing difficult, frequently encountered 

methodological issues.  

The Methods Guide for Comparative Effectiveness Reviews is a living document, and will be 

updated as further empiric evidence develops and our understanding of better methods improves. 

We welcome comments on this Methods Guide paper. They may be sent by mail to the Task 

Order Officer named below at: Agency for Healthcare Research and Quality, 540 Gaither Road, 

Rockville, MD 20850, or by email to epc@ahrq.hhs.gov. 

 

Carolyn M. Clancy, M.D. Jean Slutsky, P.A., M.S.P.H. 

Director Director, Center for Outcomes and Evidence 

Agency for Healthcare Research and Quality Agency for Healthcare Research and Quality 

 

Stephanie Chang, M.D., M.P.H.  

Director, EPC Program, and Task Order Officer  

Center for Outcomes and Evidence  

Agency for Healthcare Research and Quality 
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Introduction 

In quantitative synthesis of randomized clinical trials (RCTs) for a comparative effectiveness 

review, continuous outcomes are usually less straightforward to analyze than binary outcomes. 

Continuous outcomes are often measured at both baseline and followup time points. Results of 

continuous data can be reported as means, mean differences, or differences in change score from 

baseline, and measures of precision are reported as standard deviation (SD), standard error (SE), 

or confidence intervals. The distribution of the data is not always symmetric, and journal 

publications may not report all of the information required for meta-analysis. 

The original quantitative synthesis chapter of the “Methods Guide for Effectiveness and 

Comparative Effectiveness Reviews” has a very brief continuous outcomes section that provides 

limited guidance on using mean difference versus standardized mean difference, but the section 

does not provide guidance on a number of other issues relating to meta-analysis of continuous 

outcomes. To fill this gap, this report updates the guidance on quantitative synthesis of 

continuous outcomes measured in RCTs. 

Accordingly, we address the following topics applicable to quantitative synthesis of 

continuous outcomes measured in RCTs: choice of effect measures of continuous outcomes, 

choice of estimates for mean difference and baseline imbalance; calculation of SD and SE, how 

to handle missing data and skewed data, use and interpretation of the standardized mean 

difference (SMD) and of the ratio of means (RoM) as an alternative measure, and 

dichotomization of continuous outcomes in meta-analyses.  

For each of the topics related to quantitative synthesis of continuous outcomes, we searched 

for relevant methodological or applied methodological papers in the Effective Health Care 

Program Methods Library and in Ovid Medline, Current Index to Statistics, and Scopus 

databases (Appendix A). Recommendations for each topic were then developed based on current 

knowledge of the literature along with group discussion and consensus. A draft report of the 

workgroup’s key conclusions and recommendations was circulated for comment to peer 

reviewers and Agency for Healthcare Research and Quality officers, and those comments were 

considered by the team in preparing this report. The summary of final key points and 

recommendations are presented in Table 2 at the end of this chapter.  

Effect Measures for Continuous Outcomes  
The two effect measures most often used for continuous outcomes are mean difference and 

standardized mean difference (SMD). The choice of effect measure is determined primarily by 

the scale of the available data: Investigators can combine mean differences if multiple trials 

report results using the same or similar scales, but SMD is typically used when the outcome is 

measured using different scales. RoM,
1, 2

 a recently proposed measure, is an alternative to SMD 

for outcomes measured using different scales and  allows evaluation of the percentage change of 

a continuous outcome. This section and the next focus on different estimates of mean difference 

and choice of estimates for mean difference related to baseline imbalance. SMD and RoM are 

discussed in detail in subsequent sections. 

There are several ways to calculate mean difference for continuous outcomes measured at 

both baseline and followup in randomized clinical trials: 

1. Use the followup score only to calculate a mean difference between intervention groups. 
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2. Calculate the mean change score from baseline to followup for each intervention group 

and use the difference in the mean change scores between the intervention groups as the 

effect measure. 

3. Use the followup score as the dependent variable in an analysis of covariance 

(ANCOVA) model to estimate the difference between the intervention groups as the 

effect measure. 

4. Use the change score from baseline to followup as the dependent variable in an 

ANCOVA model to estimate the difference between the intervention groups as the effect 

measure. 

In both options 3 and 4, the variable for the intervention groups is an independent variable in 

the ANCOVA model, and the baseline score enters the model as a covariate. The coefficient for 

the variable of the intervention groups provides the estimate for the effect measure, that is, the 

difference between the two intervention groups. Options 3 and 4 are equivalent statistically in 

terms of estimating the effect measure. When the variance of the baseline score equals the 

variance of the followup score, an ANCOVA estimate is the weighted sum of the two estimates 

from options 1 and 2, and the weight is the correlation between baseline and the followup score.
3
 

If the correlation is greater than 0.5, the difference in change in score from option 2 has more 

weight; otherwise, the difference between followup scores has more weight. Note that the 

correlation between baseline and the followup score is generally positive.  

It is possible that the observed variance at baseline is very different from the variance of the 

followup score, and an ANCOVA estimate is not exactly a weighted sum of the two measures; 

however, the ANCOVA estimate usually lies between the estimates from options 1 and 2. For 

example, in a study evaluating glycemic control in patients with type 2 diabetes,
4
 patients 

randomized to the metformin group have a mean level of hemoglobin A1c of 6.79 percent, and 

the mean level for the patients randomized to the metformin plus glimepiride group is 6.42 

percent. After 20 weeks, the mean level of hemoglobin A1c is 6.86 percent in the metformin 

group, and 5.68 percent in the metformin plus glimepiride group. For the mean difference 

between the two groups, options 1 and 2 provide an estimate of 1.18 percent and 0.81 percent, 

respectively; the ANCOVA estimate is 0.92 percent, located between the above two estimates. 

The correlation between baseline and the followup score is about 0.6. 

Choice of Estimate for Mean Difference and Baseline 
Imbalance 

For an adequately randomized RCT, on average, distribution of baseline characteristics 

should be similar among intervention groups. However, baseline imbalance often occurs for one 

or more characteristics. This imbalance could be due to chance, especially in small trials,
5
 or due 

to selection bias, often caused by inadequate randomization concealment.
6
 

Assessment of Baseline Balance 

Should Investigators Assess Baseline Balance of Included Trials in 
Quantitative Synthesis? 

In the process of quality rating, the balance of baseline scores is one of the factors usually 

assessed to check the adequacy of randomization, but little attention has been paid to baseline 
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balance in quantitative synthesis. A meta-analysis may have different results depending on 

whether we adjust for baseline imbalance.
7
 Here we distinguish between two types of baseline 

variables. The first reflects the usual patient characteristics and important prognostic factors for 

the medical condition under study, and the second type reflects the baseline measurements of 

continuous variables that are specified as outcomes. Both types should be incorporated in quality 

rating, but the second is more relevant in quantitative synthesis. Quality should be downgraded if 

the balance of important prognostic factors and outcome variables is not achieved and this 

imbalance is not addressed in the included studies. 

For the second type of baseline variables, investigators should also assess the baseline 

balance for each continuous outcome and take any imbalance into consideration when 

conducting quantitative synthesis. 

How To Assess Whether the Baseline Scores are Balanced 
Though alternative opinion exists,

8
 for both types of baseline variables the use of statistical 

testing for baseline difference is generally not recommended for individual studies.
9-14

 Some 

argue that such statistical testing “is a test of a null hypothesis that is known to be true,”
14

 and 

that it “assesses the probability of something having occurred by chance when we know that it 

did occur by chance.”
12

 Even if the statistical tests are not significant, imbalance of important 

prognostic factors could affect results, and the unadjusted estimates could be biased. 

Current practices of using statistical testing for baseline difference vary. In a study of 

published RCTs in leading medical journals, unadjusted estimates of treatment effects were 

reported more frequently than adjusted estimates.
15

 Of the 110 included RCTs, 42 used statistical 

testing to compare baseline differences. In a systematic review, investigators should base 

assessments of the baseline distribution on the potential clinical importance of the actual 

differences between groups and the direction of the imbalance, not on the p-values of tests. An 

imbalance that favors the control group may have less serious consequences than an imbalance 

favoring the treatment group. When the decision is not clear cut, we recommend that the 

investigators take a conservative approach and consider the baseline scores to be imbalanced.  

If the baseline scores of the continuous variables specified as outcomes are not reported, 

investigators should not assume they are comparable even if they consider reported baseline 

patient characteristics and important prognostic factors to be comparable. If possible, 

investigators should also consider how attrition may impact imbalances in continuous outcome 

variables for the subsample with outcome data. For trials with high attrition, the baseline balance 

may not be maintained in the subsample with outcome data.
16

 If baseline scores are not reported 

with sufficient detail to judge whether they are comparable, the investigators should not assume 

that they are comparable, and this should be appropriately accounted for in quality rating.  

If the baseline score imbalance is only by chance, meta-analysis of baseline score differences 

between treatment groups of included studies should provide a combined estimate close to zero 

(given no publication bias).
7
 Investigators are encouraged to do such an analysis.  

Choice of Estimate for Mean Difference  
When the baseline scores are balanced, options 1, 2, or 3 would provide unbiased estimates 

of mean difference. The ANCOVA approach (option 3) provides a more efficient estimator with 

more precision.
10, 17, 18

 When the baseline scores are imbalanced, options 1 and 2 produce biased 

effect estimates of mean difference—option 1 simply ignores baseline imbalance, and option 2, 

contrary to common belief, does not control for the baseline imbalance. The change score is 
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negatively associated with the baseline score and patients with a worse baseline score are more 

likely to experience a high change score (regression to the mean). For instance, suppose that a 

trial has an intervention and a placebo group and the intervention group has a worse baseline 

score. The treatment effect size from the intervention will be underestimated using option 1 and 

overestimated using option 2.
19

 When baseline imbalance occurs by chance, the ANCOVA has 

been shown to be a better method to control for this imbalance, and the estimates from 

ANCOVA are less biased. When baseline scores are correlated to followup scores, adjusting for 

baseline using ANCOVA has been shown to remove conditional bias in treatment group 

comparisons due to chance imbalances
11

 and to improve efficiency over unadjusted 

comparisons.
11, 18

 

Choice of Estimate for Mean Difference When There is No or Only 
Minimal Baseline Imbalance 

Estimates from options 1, 2, or 3 could be combined in one single meta-analysis to obtain a 

combined mean difference. When there is little or no baseline imbalance, we recommend the 

following for the choice of estimates for mean difference: 

1. If reported, use an ANCOVA estimate —it is an unbiased and more efficient estimator. 

When a study does not report ANCOVA estimates, it is possible to calculate them if the 

studies report: (1) means and SDs at baseline and followup for both intervention and 

control groups, (2) means and SDs of change for both intervention and control groups, 

and (3) sample size of both intervention and control groups. However, we recognize that 

studies rarely report such detailed data and calculating ANCOVA estimates is not usually 

a practical option.  

2. If an ANCOVA estimate is not reported and the study directly reported the mean 

difference or reported enough data to calculate mean difference based on both options 1 

and 2, use the estimate with the smaller SE. Option 2, difference in change score, 

produces a small SE when correlation between baseline and post treatment is high (> 0.5 

when variance is equal at baseline and post intervention). Otherwise, option 1, difference 

between post scores, produces a small SE. There is evidence to show that the correlation 

between baseline and post score is often greater than 0.5.
20

 This correlation is often not 

reported, and Section “Dealing with Missing Data” provides more information on 

handling the missing correlation.  

3. If the study reported neither the mean difference nor enough data to calculate the mean 

difference based on both options 1 and 2, use either the reported estimate or whichever 

estimate can be calculated from the reported data. Sometimes data needed to include the 

study in the meta-analysis are missing from the report but can be calculated or imputed 

from the reported data. For more guidance on handling such situations, see the sections 

“Calculating Standard Deviation and Standard Error When They Are Not Directly 

Reported” and “Dealing With Missing Data,” below.  

4. Since all options provide unbiased estimates, it is appropriate for investigators to use the 

same estimate across trials. In practice, this advice is limited to options 1 and 2, since 

ANCOVA estimates are usually not reported consistently. In such cases, some 

assumptions about missing data are usually needed to obtain an estimate of the same 

effect measure for all trials. For example, when the change score between baseline and 

followup needs to be calculated, the correlation between baseline and the followup score 

is often not known and an assumption about the correlation is needed in order to calculate 
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the SE of change score. For more information about handling such situations, see 

“Calculating Standard Deviation and Standard Error When They Are Not Directly 

Reported” and “Dealing With Missing Data,” below.  

Choice of Estimate for Mean Difference When There is Baseline 
Imbalance 

When there is baseline imbalance, ANCOVA estimates are preferred over other options as 

they provide the least biased estimate with more precision. Options 1 and 2 would provide biased 

estimates. However, trials that are otherwise appropriate for inclusion but lack ANCOVA 

estimates should not be excluded from the quantitative synthesis, since they still provide valuable 

information about the study effect. For the choice of estimates for mean difference for each 

study, we recommend: 

1. Use ANCOVA estimates if reported (more precision and less bias). 

2. If ANCOVA estimates are not reported, conduct analyses using both estimates from 

options 1 and 2 and report the more conservative combined estimate, usually the one with 

a smaller absolute effect size. Since ANCOVA estimates lie between the estimates from 

options 1 and 2, the more conservative combined estimate is likely an underestimate 

compared with the ANCOVA estimate and therefore a better choice for guarding against 

type I error. If the results from the two estimates do not agree, investigators may also 

present both combined estimates and clearly explain that the combined estimates are 

sensitive to the choice of estimate for mean difference. A meta-regression approach
7
 has 

been suggested to adjust for baseline imbalance, though its performance has not been 

fully studied. Investigators may choose this approach as an additional sensitivity analysis.  

3. If enough trials in a meta-analysis report ANCOVA estimates, investigators are 

encouraged to conduct subgroup analyses to compare results from ANCOVA versus non-

ANCOVA estimates as an additional sensitivity analysis.  

Calculating Standard Deviation and Standard Error When 
They Are Not Directly Reported 

Commonly used meta-analysis packages (e.g., Review Manager [RevMan], Stata) require 

three parameters from each of the intervention groups in order to calculate a weighted mean 

difference: the mean, the SD, and the sample size. The mean could be the mean change score 

from baseline or the mean score at followup based on the choice of estimate for mean difference. 

If any of these are missing, the study will be omitted from the meta-analysis. Alternatively, 

investigators could use the mean difference between the intervention groups and its associated 

SE directly in meta-analysis.  

Frequently, precision parameters such as SD and SE are not reported directly but may be 

calculated from other reported statistics.  Investigators should always look for reported data that 

could be used to conduct exact algebraic calculation of these parameters. In this section, we 

present formulas for calculating SD and SE using other reported statistics. We also briefly 

discuss the issue of incorporating correlation into calculation of SD for crossover and cluster 

randomization trials.  
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Calculation of Standard Deviation and Standard Error Using 

Available Data  
When SD is not directly reported, it can be computed (assuming both mean and sample size 

are given) from other reported data: SEs, confidence intervals, z- or t-statistics, or exact 

parametric p-values using available formulas.
21

 These other reported data could be available for 

either the mean between baseline and followup from each intervention group or for the mean 

difference between two intervention groups.  

Available Data for One Intervention Group and the Change Scores 
In this section, all calculations apply to obtaining the SD for the change score (i.e., the 

difference between baseline and followup from any one intervention group) when conducting a 

meta-analysis using three parameters from each intervention group. 

If given an SE of the mean change score of one intervention group in a trial of sample size n, 

the SD for that group can be computed as: 

     

nSESD      (1) 

 

If given a 95% normal confidence interval in the form of (lower confidence bound [LCB], 

upper confidence bound [UCB]) around the mean, we can compute the SE using the formula: 

 

92.3

LCBUCB
SE      (2) 

 

Formula (1) can then be used to compute SD. If a 90% confidence interval is given rather 

than a 95% confidence interval, the divisor in formula (2) should be changed to 3.29. If the 95% 

confidence interval was based on t-distribution, the denominator in the formula must be replaced 

with the appropriate inverse percentile of the t-distribution multiplied by 2. This could easily be 

done in Microsoft Excel® by typing in any cell “= tinv(0.05,n-1)” where n is the sample size of 

the intervention group. If the confidence interval is 90% instead of 95%, replace 0.05 with 0.1.  

If given a z-statistic or a t-statistic, for the instance of the change score from baseline in each 

intervention group, the SE can be computed using the change score: 

 

|   |mean change score
SE

z
  or   

|   |mean change score
SE

t
   (3) 

 

Again, formula (1) can then be used to determine the SD.  

If an exact p-value is reported for testing whether the followup score is significantly different 

from baseline in each intervention group, the p-value can be converted to a z-statistic first, using 

the inverse normal value. The easiest way to obtain the z-statistic is by entering “= normsinv(1-

p/2)” in any cell, where p is the reported p-value. For example, if the given p-value is 0.03, enter 

“=normsinv(0.985)”, which returns the z-statistic of 2.17. If the sample size is small and the 

study obtained the p-value using a paired t-test, then the t-statistic could be obtained by entering 

“=tinv (p,df)”, where p is the reported p-value and df is the degree of freedom for the t-test and 
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equals n-1, where n is the sample size of the intervention group. Then formula (3) can be used to 

calculate SE.  

If an upper-bound p-value (e.g., p<0.05) is given, then this upper bound can be used with the 

same formulas to obtain a conservative estimate of the SD. 

For calculating SD for the change score, if the SD at baseline (SDb) and followup (SDf) are 

reported, SD for the change score can also be calculated as: 

 

fbfb SDSDrSDSDSD ***222      (4) 

 

where r is the correlation between baseline and the followup score. Information about r is often 

not available and needs to be imputed. For more information on handling missing data for r, see 

the section “Dealing with Missing Data.” 

Available Data for the Mean Difference between Two Groups 
If a confidence interval, a z-statistic, or a t-statistic is given for the difference of means 

between two intervention groups, variations on formulas (2) and (3) can be used to calculate the 

SE for the mean difference between groups. For formula (3), replace the change score with the 

mean difference. If an exact p-value for a mean difference is given, it can be converted to a z-

statistic using the same Excel “normsinv(1-p/2)” function. If the sample size is small and the 

study obtained the p-value using a two-sample t-test, then the t-statistic could be obtained by 

using the Excel function “tinv(p,df)” where p is the reported p-value, but df equals n1 + n2 -2 in 

this case, where n1 and n2 are the sample size of each intervention group. If an upper-bound p-

value (e.g., p<0.05) is given, then the same formulas can be used to obtain a conservative 

estimate of the SE for mean difference. 

In some cases, when the SDs for each intervention group (SDT and SDC for treatment and 

control groups, respectively) are reported, SE for the mean difference between intervention and 

control can be calculated as: 

 
22

,CT

T C

SDSD
SE

n n
     

(5) 

 

where nT and nC are the sample sizes of the two intervention groups. If the estimates of SDT and 

SDC are similar, one can also use: 

 

2 2( 1) ( 1) 1 1
.

2
T T C C

T C T C

n SD n SD
SE

n n n n
 

(6) 

 

Unlike formula (4), there is no need to consider correlation since the intervention groups are 

independent in a parallel design. 

If the individual standard deviations are not given but the SE of the mean difference is 

presented, this SE can be used directly in the meta-analysis. While this SE is sufficient to 

determine the precision of the mean difference, some meta-analysis software packages (e.g., 

RevMan) require the user to input the individual standard deviations. In this case, the simplifying 
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assumption could be made that treatment SD is equal to the control SD, and this computed SD 

can then be used for both intervention and control groups. This assumption will not affect the 

final result since the precision of the estimate is determined solely by the given SE, and the 

estimated SD is only used to re-compute this given SE for the specific software package. The 

common SD can be estimated as: 

 

.T C

T C

n n
SD SE

n n
       (7) 

 

Direct use of the SE of the difference in means between groups (and the mean difference) in 

the meta-analysis or computing the SD of each of the trial group will give the same result. 

Usually the choice of method depends on the type of data reported in the included trials and the 

meta-analysis package used. 

Occasionally trial authors may confuse standard deviation and standard error. The formulas 

in this section can be used to verify the values if the study has reported confidence intervals or p-

values in addition to the SDs or SEs. In a meta-analysis, if one study has an SD that is much 

smaller than that of all the other trials and has a disproportionally high weight in the meta-

analysis, this can be a red flag that an SE was misreported as an SD. 

A Worked Example 
Suppose that a parallel study with 15 patients in each group reports the following: “The mean 

systolic blood pressure in the treatment group was 122.4 mmHG while in the control group it 

was 134.5 mmHG. This difference was not statistically significant (p=0.24).” If this p-value was 

computed from a z-statistic, how would we compute the SD? 

 Mean difference = 134.5 – 122.4 = 12.1. 

 1-p/2 = 1-0.24/2 = 0.88. Entering “=normsinv(0.88)” in an Excel cell gives a z-statistic of 

1.175. Note: If the t-distribution had been used, then the t-statistic = tinv(0.24, 28) = 

1.201 where 28 = 15+15-2. 

 SE = 12.1/1.175 = 10.298. This number could be used directly in the meta-analysis, or if 

one is using a software package that requires the SD in each group, it can be computed 

from this SE: 

15*15
10.298 28.2

15 15
T C

T C

n n
SD SE

n n
 

 This SD can be entered for both treatment and control groups. 

Crossover Trials 
For trials with a parallel design, the intervention groups are independent of each other, and 

there is no need to consider correlation between intervention groups when calculating SE for 

mean difference. A crossover design is one where the participants, in sequence, receive both the 

intervention and the control and thus all patients are included in both arms of the trial. When a 

crossover trial is included in a meta-analysis, in most cases, using the methods of a parallel 

design to calculate SE for mean difference will give an SE that is too large because the positive 

correlation associated with using the same patients in both the treatment and control groups 
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lowers the variance of the mean difference. The formula to compute the pooled SE for a 

crossover trial is: 

 

2 2 2              (8)d T C T CSE SE SE rSE SE
               

where r is the within-patient correlation coefficient and SEd, SET, and SEC are the difference, 

treatment, and control SEs respectively. For a parallel trial the value of r is always 0, thus the last 

term becomes 0. For a crossover study, however, the value of r is usually not reported from the 

trial and needs to be estimated in order to properly compute the correct SE. See Section “Dealing 

With Missing Data” for methods for calculating or imputing r. 

Cluster Randomized Trials 
Cluster randomized trials are similar to crossover trials in that formula (5) or (6) will not 

provide the correct SE for mean difference. Data among patients within a cluster are usually 

positively correlated. However, unlike in crossover trials, ignoring this correlation in cluster 

randomized trials will produce an SE of the mean difference between intervention groups that is 

too small. If a cluster randomized trial reported an SE that failed to account for this correlation, 

the simplest way to account for this discrepancy is to compute a design effect (DE) as: 

 

DE 1 ( 1)ICC             (9)m   

      

where m is the average cluster size and ICC is the intra-class correlation coefficient. The ICC is 

defined as the proportion of the total variance (the within-cluster variance plus the between-

cluster variance) that is attributed to the between-cluster variance. The square root of the design 

effect can then be multiplied by the standard error of the regular mean difference (computed as if 

it were parallel) to produce the adjusted SE. This new adjusted variance will appropriately reflect 

the loss of precision due to the cluster randomization design. 

 

A Worked Example 
 For a cluster randomized trial, suppose that the SE of the mean difference is calculated to be 

2.4 using the methods for a parallel design. If the average cluster size was 10 and the ICC was 

estimated to be 0.03, we can adjust the SE for the design effect as: 

 

 
DE 1 (10 1)*0.03 1.27

=sqrt(DE)* =sqrt(1.27)*2.4=2.7adjSE SE
 

Therefore, 2.7 is the standard error that should be used in the meta-analysis. 

The ICC will generally be quite low (less than 0.1) in cluster randomized trials, but it can still 

have a fairly large effect on the trial variance, particularly when the average cluster size is quite 

large. Usually this ICC is not reported from the published trials and the investigators need to 

assume a plausible value to calculate the SE. Investigators should always conduct sensitivity 

analyses by assuming several values of ICC and checking how robust the results are in 

comparison with the assumed ICC values. In addition, databases for ICC estimates are available 

for some outcomes,
22-25

 and investigators may refer to the relevant literature to check whether the 
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typical magnitudes of ICC for the type of outcome under study have been reported and make 

assumptions around the typical estimates.  

Dealing With Missing Data 
Missing data is a common issue in meta-analysis and often leads to biased estimates. Missing 

data can take many forms: missing studies, missing outcomes, missing summary data, missing 

individual, and missing study-level characteristics. Missing studies and missing outcomes are 

complex issues that are not specific to continuous data and will not be discussed here. This 

section focuses on the issue of missing summary data, which is most relevant to continuous data 

in the meta-analysis. The issues of missing individuals and missing study-level data will be 

discussed briefly. 

How Are the Missing Data Distributed? 
Missing data can be categorized into one of three types based on missing mechanism: 

missing completely at random (MCAR), missing at random (MAR), or missing not at random 

(MNAR).
26

 Data are said to be MCAR if being missing does not depend on observed or 

unobserved measurements. MAR means that, given the observed data, the reason data are 

missing does not depend on unobserved data. Data are MNAR if they are neither MCAR nor 

MAR. Missing data that are MCAR or the more reasonable MAR are considered ignorable in a 

systematic review. There is no bias in simply performing the meta-analysis without the missing 

data, and the combined estimate only suffers from less precision.
27

 Unfortunately, missing data 

are usually suspected to be MNAR and must be considered. Simply omitting trials with data that 

are MNAR will lead to biased results.
26

 

Missing Summary Data 
If a study is missing data elements that are required in a meta-analysis and these data cannot 

be calculated from reported data, it is often a good idea to contact the authors to obtain the 

missing values before conducting the analysis. If it is not possible to obtain the missing values, 

investigators need to either exclude the study or impute the missing data in some way. Both 

omitting a study and imputing for missing values can result in bias and under-precision, but it is 

generally accepted that omitting studies should be avoided when possible. 

Standard deviation is the most commonly missing parameter. We recommend that studies 

missing only SDs should not be excluded, as this could lead to a biased combined estimate. For 

example, studies with nonsignificant results were more likely to omit standard deviations.  

Imputation of Standard Deviation 
If the data are not available in an alternative form that allow direct calculation, imputation of 

missing values is often recommended, based on results from simulation studies.
28

 Several simple 

methods have been suggested for directly imputing missing SDs, including direct substitution 

using the largest SD of the included studies, arithmetic means,
29

 linear regression,
30

 coefficient 

of variation,
31

 and imputation from correlation.
28

 We demonstrate some of these methods using 

the following example, taken from a review comparing asthma patients using long-acting beta 

agonist (LABA) and inhaled corticosteroid (ICS) in combination versus using ICS alone.
32

 The 

outcome is pulmonary function in L/min.  
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The studies labeled Strand and SAM40036 are missing their SD and are not counted in the 

final meta-analysis (Figure 1).
32

 A direct substitution of the largest SD shows that the largest SD 

in the LABA/ICS group is 52.14 and in the ICS group is 49.64 (Figure 2). 
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Figure 1. Results of meta-analysis of pulmonary function without including studies with missing data32 

 
 
 
Figure 2. Results of meta-analysis of pulmonary function, imputing missed data using direct substitution.*  

 
*The two studies with imputed SDs are indicated in boxes. 

 

Study or Subgroup

Nelson 2003

Chuchalin 2004

SAS30015 2004

Strand 2004

SAM40034 2004

Murray 2004

SAM40036 2004

SAS30039 2005

SAS40068 2005

Boonsawat 2008

Kerwin 2008

Total (95% CI)

Heterogeneity: Tau² = 0.00; Chi² = 2.28, df = 8 (P = 0.97); I² = 0%

Test for overall effect: Z = 11.29 (P < 0.00001)

Mean [L/min]

51.5

55.2

45.6

40

51

51

51

64.4

42.3

37.5

48.7

SD [L/min]

46.2

52.14

45.8

0

43.4

50.66

0

48.83

41.83

38.09

40.58

Total

95

111

74

78

75

88

288

179

251

151

210

1600

Mean [L/min]

29.9

33.6

26.7

14

27.7

30.4

40.1

42.9

27.3

17.7

27.9

SD [L/min]

49.64

46.3

37.5

0

43.3

45.28

0

49.64

41.44

37.35

40.77

Total

97

114

75

72

79

89

289

180

262

155

212

1624

Weight

6.3%

6.9%

6.4%

6.1%

5.7%

11.1%

22.2%

16.1%

19.1%

100.0%

IV, Random, 95% CI [L/min]

21.60 [8.04, 35.16]

21.60 [8.70, 34.50]

18.90 [5.45, 32.35]

Not estimable

23.30 [9.60, 37.00]

20.60 [6.44, 34.76]

Not estimable

21.50 [11.31, 31.69]

15.00 [7.79, 22.21]

19.80 [11.35, 28.25]

20.80 [13.04, 28.56]

19.56 [16.16, 22.95]

Year

2003

2004

2004

2004

2004

2004

2004

2005

2005

2008

2008

LABA/ICS ICS Mean Difference Mean Difference

IV, Random, 95% CI [L/min]

-50 -25 0 25 50

Favours ICS Favours LABA/ICS

Study or Subgroup

Nelson 2003

Chuchalin 2004

SAS30015 2004

Strand 2004

SAM40034 2004

Murray 2004

SAM40036 2004

SAS30039 2005

SAS40068 2005

Boonsawat 2008

Kerwin 2008

Total (95% CI)

Heterogeneity: Tau² = 0.00; Chi² = 6.68, df = 10 (P = 0.76); I² = 0%

Test for overall effect: Z = 11.81 (P < 0.00001)

Mean [L/min]

51.5

55.2

45.6

40

51

51

51

64.4

42.3

37.5

48.7

SD [L/min]

46.2

52.14

45.8

52.14

43.4

50.66

52.14

48.83

41.83

38.09

40.58

Total

95

111

74

78

75

88

288

179

251

151

210

1600

Mean [L/min]

29.9

33.6

26.7

14

27.7

30.4

40.1

42.9

27.3

17.7

27.9

SD [L/min]

49.64

46.3

37.5

49.64

43.3

45.28

49.64

49.64

41.44

37.35

40.77

Total

97

114

75

72

79

89

289

180

262

155

212

1624

Weight

5.2%

5.7%

5.3%

3.6%

5.1%

4.7%

13.8%

9.2%

18.3%

13.3%

15.8%

100.0%

IV, Random, 95% CI [L/min]

21.60 [8.04, 35.16]

21.60 [8.70, 34.50]

18.90 [5.45, 32.35]

26.00 [9.71, 42.29]

23.30 [9.60, 37.00]

20.60 [6.44, 34.76]

10.90 [2.59, 19.21]

21.50 [11.31, 31.69]

15.00 [7.79, 22.21]

19.80 [11.35, 28.25]

20.80 [13.04, 28.56]

18.59 [15.51, 21.68]

Year

2003

2004

2004

2004

2004

2004

2004

2005

2005

2008

2008

LABA/ICS ICS Mean Difference Mean Difference

IV, Random, 95% CI [L/min]

-50 -25 0 25 50

Favours ICS Favours LABA/ICS
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Alternatively, investigators could use the arithmetic means of the SDs in each group. That is, for the LABA/ICS group, take (46.2 

+ 51.14 + 45.8 + … + 40.58)/9 = 45.28. This results in 43.47 for the ICS group. Using these values for the two missing studies yields 

similar results to imputing using the maximum (Figure 3). 
 

Figure 3. Results of meta-analysis of pulmonary function, imputing missed data using arithmetic means.* 

 

 
*The two studies with imputed SDs are indicated in boxes. 

 

To use average coefficient of variation (CV) to impute, investigators need to first calculate a CV for each study. CV is defined as 

SD/mean. For example, for the Nelson study, CV=46.2/51.5 = 0.897. Computing CV for each study and then taking the average gives 

0.921 for the LABA/ICS group and 1.527 for the ICS group. To estimate the SD for studies with a missing SD, use these values and 

the formula SD = CV*mean. In this case, for the Strand study, the mean is 40 in the LABA/ICS group, and the estimate of SD is 

40*0.921 = 36.84. Using this method gives similar results to the previous two methods (Figure 4).  

 
 

 

 

 

 

 

Study or Subgroup

Nelson 2003

Chuchalin 2004

SAS30015 2004

Strand 2004

SAM40034 2004

Murray 2004

SAM40036 2004

SAS30039 2005

SAS40068 2005

Boonsawat 2008

Kerwin 2008

Total (95% CI)

Heterogeneity: Tau² = 0.00; Chi² = 7.94, df = 10 (P = 0.63); I² = 0%

Test for overall effect: Z = 11.97 (P < 0.00001)

Mean [L/min]

51.5

55.2

45.6

40

51

51

51

64.4

42.3

37.5

48.7

SD [L/min]

46.2

52.14

45.8

45.28

43.4

50.66

45.28

48.83

41.83

38.09

40.58

Total

95

111

74

78

75

88

288

179

251

151

210

1600

Mean [L/min]

29.9

33.6

26.7

14

27.7

30.4

40.1

42.9

27.3

17.7

27.9

SD [L/min]

49.64

46.3

37.5

43.47

43.3

45.28

43.47

49.64

41.44

37.35

40.77

Total

97

114

75

72

79

89

289

180

262

155

212

1624

Weight

4.9%

5.4%

5.0%

4.5%

4.8%

4.5%

17.2%

8.7%

17.4%

12.6%

15.0%

100.0%

IV, Random, 95% CI [L/min]

21.60 [8.04, 35.16]

21.60 [8.70, 34.50]

18.90 [5.45, 32.35]

26.00 [11.79, 40.21]

23.30 [9.60, 37.00]

20.60 [6.44, 34.76]

10.90 [3.66, 18.14]

21.50 [11.31, 31.69]

15.00 [7.79, 22.21]

19.80 [11.35, 28.25]

20.80 [13.04, 28.56]

18.36 [15.35, 21.36]

Year

2003

2004

2004

2004

2004

2004

2004

2005

2005

2008

2008

LABA/ICS ICS Mean Difference Mean Difference

IV, Random, 95% CI [L/min]

-50 -25 0 25 50

Favours ICS Favours LABA/ICS
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Figure 4. Results of meta-analysis of pulmonary function, imputing missed data using coefficient of variation.*  

 

 
*The two studies with imputed SDs are indicated in boxes. 

 

More complex methods for calculating a weighted mean difference directly in the presence of missing SD data include sample size 

weights,
33

 bootstrap methods,
34

 multiple imputation methods,
35, 36

 the interval method,
37

 and the prognostic method.
37

 These methods 

are complex and don’t permit the creation of a standard forest plot. While these methods may yield more accurate accounting of the 

true variance in the meta-analysis, this has yet to be fully evaluated. Other work has been done taking into account the uncertainty of 

the SD when it is imputed.
38, 39

 A full accounting of these methods is beyond the scope of this paper and investigators are encouraged 

to look more into each of these methods themselves. There is not yet enough evidence to indicate the relative performance of the 

various approaches, though there is some evidence that the method chosen may not make a meaningful difference.
21, 40

 

To summarize, investigators should always try to contact authors to request exact estimates. Studies missing only SDs should not 

be excluded as this may lead to a biased combined estimate when studies with nonsignificant findings are more likely to omit SDs. If 

exact estimates cannot be obtained, imputation using one of the methods described above should be conducted. Direct substitution 

using the largest SD is the simplest method and the most likely to lead to a conservative estimate. However, if one is comfortable with 

one of the more complex methods, using it may lead to a more accurate estimate of precision parameter and is encouraged. No method 

has been shown to be absolutely superior to any other, so it is most important that the reviewer choose a valid method with which they 

are comfortable. Investigators may choose to use alternative imputation methods in a sensitivity analysis to determine how robust the 

results are with respect to the different imputation methods. It is also recommended that investigators report which studies had 

imputed SDs and which method(s) was used to perform the imputations.

Study or Subgroup

Nelson 2003

Chuchalin 2004

SAS30015 2004

Strand 2004

SAM40034 2004

Murray 2004

SAM40036 2004

SAS30039 2005

SAS40068 2005

Boonsawat 2008

Kerwin 2008

Total (95% CI)

Heterogeneity: Tau² = 0.00; Chi² = 7.61, df = 10 (P = 0.67); I² = 0%

Test for overall effect: Z = 12.50 (P < 0.00001)

Mean [L/min]

51.5

55.2

45.6

40

51

51

51

64.4

42.3

37.5

48.7

SD [L/min]

46.2

52.14

45.8

36.84

43.4

50.66

46.97

48.83

41.83

38.09

40.58

Total

95

111

74

78

75

88

288

179

251

151

210

1600

Mean [L/min]

29.9

33.6

26.7

14

27.7

30.4

40.1

42.9

27.3

17.7

27.9

SD [L/min]

49.64

46.3

37.5

21.38

43.3

45.28

61.23

49.64

41.44

37.35

40.77

Total

97

114

75

72

79

89

289

180

262

155

212

1624

Weight

4.9%

5.4%

5.0%

9.9%

4.8%

4.5%

11.4%

8.7%

17.4%

12.7%

15.0%

100.0%

IV, Random, 95% CI [L/min]

21.60 [8.04, 35.16]

21.60 [8.70, 34.50]

18.90 [5.45, 32.35]

26.00 [16.45, 35.55]

23.30 [9.60, 37.00]

20.60 [6.44, 34.76]

10.90 [2.00, 19.80]

21.50 [11.31, 31.69]

15.00 [7.79, 22.21]

19.80 [11.35, 28.25]

20.80 [13.04, 28.56]

19.21 [16.20, 22.22]

Year

2003

2004

2004

2004

2004

2004

2004

2005

2005

2008

2008

LABA/ICS ICS Mean Difference Mean Difference

IV, Random, 95% CI [L/min]

-50 -25 0 25 50

Favours ICS Favours LABA/ICS
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Missing Correlations  
To calculate the SD for change from baseline when meta-analyzing change from baseline 

scores, the correlation between baseline and followup scores is required in addition to the SDs 

for baseline and followup scores. This information is often not available from trial reports and 

has to be imputed. 

The first option for imputation is to use estimates of correlation from other similar studies 

included in the same meta-analysis. If a study gives the SDs for both individual scores as well as 

for the change score, one can compute the correlation (r) using the following formula (which is a 

rearrangement of formula [4]): 
2 2 2

             (10)
2

b f

b f

SD SD SD
r

SD SD
              

 

where SDb, SDf, and SD represent the SDs for baseline, followup, and change scores, 

respectively. This correlation can be used as an estimate of the correlation in studies where the 

SD for change scores is not available but the SDs for baseline and followup scores are available.  

If it is not possible to compute a correlation from any of the included studies, one can either 

estimate it from historical data or use an approximate value. In the latter case, the most common 

value to use is 0.5.
29

 This can be considered a conservative estimate when using the change 

scores from baseline. A recent study
20

 showed that the median correlation for change from 

baseline among trials included in systematic reviews was 0.59 (interquartile range [IQR]: 0.40, 

0.81). A correlation less than 0.5 would make using followup scores generally more efficient 

than using the change scores from baseline. Thus if a trial author used the change scores from 

baseline, we can assume the correlation was at least 0.5. As in the case of missing SDs, 

investigators can always conduct sensitivity analyses by assuming several values of correlation. 

The methods described here can also be used for dealing with crossover studies, in which 

case r would be calculated by rearranging formula (8).  

Missing Individuals and Missing Study-Level Characteristics 
Individuals missing from a study due to withdrawal and other reasons create an issue at the 

study level more than at the meta-analysis level. While missing individuals will also affect the 

results of meta-analysis, it is very difficult to deal with at the meta-analysis level without access 

to individual patient data. Nevertheless, three methods have been proposed to account for 

missing patient data: reweighting by completion rate, incorporation of the completion rate into a 

Bayesian random-effects model, and inference based on a Bayesian shared-parameter model 

(including the completion rate).
41

 

Missing study-level characteristics will not affect the overall meta-analysis but can affect or 

even prevent subgroup analysis and meta-regression. Bayesian methods have been suggested to 

account for missing study-level data during meta-regression,
42

 but these issues are complex and 

do not specifically pertain to continuous data. No particular methods are recommended, and 

investigators may try the methods outlined above for exploratory purposes.  
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Dealing with Skewed Data 
Most meta-analytic techniques for continuous data are based on the mean of the variable of 

interest, for example, a clinical outcome and a measure of dispersion. If the variable’s 

distribution is asymmetric, then the data are classified as skewed.  

Meta-analytic methods based on means provide correct inference when the individual studies 

have sufficiently large sample sizes regardless of the variable’s distribution due to the Central 

Limit Theorem, or when the variable of interest is at least approximately normally distributed.
43

 

However, if neither the sample size is sufficient nor the variable of interest is approximately 

normal, ignoring variable skewness or treating skewness inadequately can result in misleading 

conclusions. We know of no comprehensive survey or simulation study addressing the range of 

possible results of ignoring skewness. However, several examples are available that demonstrate 

the effects. For example, Ziguras et al.
44

 compared two meta-analyses of interventions to reduce 

alcohol consumption, one of which excluded skewed data and one of which did not. The 

difference in handling skewed data was discussed as one of the reasons that the two analyses 

produced different results. Shen et al.
45

 provided an example regarding the relationship between 

hospital ownership and financial performance in which disregarding skewness produced 

misleading results.  

Typically, an individual study would report nonparametric summaries such as the median 

and interquartile range if the variable’s distribution is not symmetric. However, the variable of 

interest may be suspected to be skewed and yet an individual study will report parametric 

summaries, that is, the mean and SD (or SE or variance). Alternatively, for variables with a 

skewed distribution, an individual study may transform the data and present either summary 

statistics on the transformed scale or different statistics, for example, the geometric mean, on the 

raw (original) scale.  

Assessing Skewness 
When nonparametric summaries are reported in individual studies, the study authors often 

have evidence of skewness in the data. Thus, prior to beginning analysis, we recommend that the 

meta-analyst carefully consider the distribution of each variable of interest and assess whether 

the distribution may be skewed. This assessment should be based on substantive knowledge of 

the variable and prior data, if available. For example, utilization and cost variables are often 

skewed due to a subpopulation of users with no use, and thus no cost, and a few individuals with 

very high use and hence high cost. When median (or mean) with IQR or range are reported, 

some idea about the distribution usually can be gained. The two end points of IQR and range are 

not symmetric around median (or mean) if the distribution of the data is skewed. Altman and 

Bland
46

 also provide two useful checks for skewness. If the mean is smaller than twice the SD in 

each intervention group, the data are likely to be skewed. If there are data from several groups of 

individuals, and the SD increases as the mean increases across these groups, this indicates that 

the data are positively skewed. However, data needed for the second check for skewness often 

may not be reported in the individual studies.  

Using Nonparametric Summaries Assuming Symmetry 
If symmetry is assumed, nonparametric statistics like medians, ranges, and interquartile 

ranges can be used to estimate both means and SDs. These nonparametric summaries are only 

estimates of the true parameters, unlike the direct calculations in the section “Calculating 
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Standard Deviation and Standard Error When They Are Not Directly Reported.” Depending on 

sample size, different nonparametric summary methods have been used to obtain means from 

either the median or the range and SDs from either the range or the interquartile range.
21, 23, 47

 

The median is similar to the mean when the variable distribution is symmetric. Thus, if an 

individual study reports the median for a variable of interest, the median can be used in place of 

the mean to calculate the mean difference. Most past analyses have used a simple direct 

substitution of median, but there is a recent study 
47

 showing that if the range (i.e., the minimum 

[a] and maximum [b] values) are given, a better estimate of the mean for sample sizes less than 

25 is: 

(11)            
4

2 bma
X  

while the median itself remains the best estimator for sample sizes greater than 25.  

 For estimating SD, the most common practice has been to simply compute it from the range 

or IQR. IQR indicates the length of the interval between the 25th percentile and 75th percentile 

in which the central 50 percent of the sample values of the variable lie. In these situations, SD 

can be estimated as IQR/1.35 or as range/4. Hozo
47

 suggested that range/4 should be used for 

sample sizes between 15 and 70, while range/6 should be used for sample sizes greater than 70. 

For sample sizes smaller than 15, the formula below can be used to estimate SD: 

(12)                 )(
4

)2(

12

1 2
2

ab
bma

SD  

 

Since range is inherently dependent upon sample size, Wiebe
21

 suggests that the table below 

reproduced from Pearson
48

 (see Table 1) should be used to impute SD from range. The SD can 

be determined simply by dividing the range by the given divisor (which represents the 

percentage limit for the distribution of the range in a normal population). 

Look up the sample size on Table 1 and use the given divisor. For example, if the sample size 

is 22, then SD could be estimated as range/3.819. It should be noted that Table 1 assumes that 

the sample data is drawn from a normal distribution. Investigators should use it only when the 

distribution of data is at least symmetric. 
 

Dealing with Skewness 
If skewness is suspected, and individual studies present nonparametric summaries, one can 

estimate the mean and SD and proceed with usual meta-analysis methods using the resulting 

estimates. This approach works if the skewness is at most moderate, for example, when the 

variable of interest has a symmetric distribution in most included studies but shows some 

skewness in others. However, in the case of significant skewness, for example, when the 

distribution of the variable of interest is consistently skewed across studies, we recommend 

transforming the summary statistics of the variable of interest to reduce skewness. An additional 

advantage of such a transformation can be increased clinical interpretability.
43

 Generally a 

logarithmic transformation is used, particularly when the data are economic in nature. Some 

studies may report summaries on the logarithmic scale; the antilog of the mean of the log data is 

the geometric mean. Alternatively, study may present the geometric mean on the raw (original) 

scale alongside its confidence interval or SE. Investigators cannot combine summaries on the 
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raw scale with summaries on the transformed scale. Higgins et al.
43

 present methods for 

transforming between different scales which allow the meta-analyst to determine whether to 

conduct the meta-analysis on the raw scale or on the log-transformed scale as appropriate. Issues 

to take into consideration when choosing the scale include, for example, which scale was most 

commonly used across the individual studies.   

Some recent research focuses on conducting nonparametric meta-analysis. For example, Ma 

et al.
37

 discussed a nonparametric method that utilizes U-statistic theory. Such nonparametric 

approaches would obviate the need for distributional assumptions, be they normality or 

symmetry, but may be statistically inefficient. Other authors propose using a ratio of geometric 

means to analyze skewed continuous data;
49

 however, the lack of clinician experience with 

geometric means may make such methods difficult to implement. Investigators may choose to 

explore these methods and compare them with the results of their primary analysis.  

Standardized Mean Difference 
For continuous outcomes, different studies in a meta-analysis may use a variety of 

instruments on different scales to assess the same outcome. For example, included trials might 

use the Beck Depression Inventory, the Geriatric Depression Scale, and the Center for 

Epidemiologic Studies Depression scale to measure depression. If these instruments are 

sufficiently similar to suggest that they are truly measuring the same outcome, standardized 

mean difference (SMD), a measure of effect size, could be used to combine the studies using 

different scales. In this section, we discuss the choice and interpretation of SMD estimates and 

offer caveats on using SMD. 

Choice of Standardized Mean Difference 

Commonly used estimates of SMD include Cohen’s d, Hedges’ g, and Glass’ ,
50, 51

 which 

are all calculated by dividing the mean difference by the SD. The difference between the effect 

measures lies in the denominator: Glass’  uses the estimate of the SD from the control group: 
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Cohen’s d divides by the maximum likelihood estimate of the common population SD, 

calculated as:  
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where 
T CX X  is the mean difference between the two intervention groups and TSD and CSD are 

the standard deviations of the two intervention groups.  

Hedges’ g uses the pooled sample SD, calculated as:  
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The estimated variance for Cohen’s d and Hedges’ g is given by 
2
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 respectively.  

All three effect measures are biased to estimate the population standardized mean difference, 

and the bias can be more than trivial when the sample sizes of both intervention groups are small. 

Durlak
51

 suggested that the positive bias “amounts to a 4 percent reduction in effect when the 

total sample size is 20 and around 2 percent when N = 50.” Hedges 
52

 provided a formula to 

correct for this small sample bias for Hedges’ g and to serve as an unbiased estimator of the 

population SMD: 
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where (.) is the gamma function. The estimated variance for Hedges’ gadj is given by 
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Under the equal variance assumption, Cohen’s d and Hedges’ g are more precise estimators than 

Glass’ , and Hedges’ g has smaller sample variance than Cohen’s d.  

Hedges’ unbiased estimator should be used whenever possible, especially when the sample 

sizes are smaller than 20. For sample sizes greater than or equal to 20, Hedges’ g is generally 

preferred over Cohen’s d or Glass’ . When sample size is large, the difference between Hedges’ 

g and Cohen’s d is small and they can be used interchangeably. When variance across the groups 

differs and the control group may be a more accurate estimate of true population variance, Glass’ 

 is preferable. Sensitivity analyses are recommended to check how the results differ between 

using Hedges’ g and Glass’ . 

Interpreting Values of Standard Mean Difference 
In theory, SMD can be any number, positive or negative. SMDs of 0.2, 0.5, and 0.8 are 

suggested corresponding to small, medium, and large effects 
53

 and widely used, although they 

are not defined in meaningful clinical contexts. Conclusions about clinical importance of the 

differences are often not clear using SMDs. 

We recommend that investigators consider back-transforming the combined SMD to the 

original scale to facilitate assessing the clinical importance of combined SMDs and to aid 
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decision making. Back-transforming can be done by multiplying the SMDs by the SD of the 

original scale derived from the population representative studies. Since data from more than one 

scale are combined, investigators need to choose an SD for each scale they plan to back-

transform. The standard deviation chosen for the back-transformation could be pooled from the 

individual studies included in the meta-analysis as long as they all use the same original scale, or 

from representative studies using the same scale. Whichever approach is taken, researchers are 

cautioned that back-transformation should only occur for the summary estimate of effect size and 

not for effect size results from individual studies, due to possible differences in variability across 

studies (Chapter 12, section 6).
27

 The back-transformed mean difference should be evaluated for 

clinical importance according to evidence-based definitions of minimum clinically important 

differences. 

A Worked Example To Illustrate Back-Transformation of the Pooled 
SMD 
 In a CER looking at the effectiveness of treatment in preschoolers at risk of attention deficit 

hyperactivity disorder (ADHD),
54

 a meta-analysis was conducted to summarize the benefit of 

parent behavior training (PBT) for disruptive behavior disorder (DBD) in eight “good” quality 

studies. The outcome was the measured change in parent-rated child behavior, and scales used to 

measure the child disruptive behavior included the Eyberg child behavior inventory (ECBI), 

parental account of childhood symptoms (PACS), and reports of ADHD symptoms. The meta-

analysis yielded a combined SMD of -0.68 (95% CI -0.88, -0.47), which corresponded to a 

medium effect size and indicated that PBT improved parent-rated child behavior in preschoolers. 

The original CER did not do back-transformation of SMD.  

Four studies included in the meta-analysis used (the intensity subscale of) ECBI, and the SDs 

for the mean difference between PBT and the control groups were similar across studies, ranging 

from 33.0 to 36.8. To back-transform the combined SMD to the ECBI scale, as discussed above, 

the SD could be pooled from these four studies or from a representative study. If we take the 

second approach and consider the largest study, which has a SD of 36.8, to be a representative 

study then the back-transformed mean difference is -25.0 (95% CI -32.4, -17.3) on the ECBI 

scale.  

Two studies included in the meta-analysis used PACS. One study had a sample size of 50 

with a SD of 6.07 for the mean difference, and the other study had a sample size of 30 with a SD 

of 7.53 for the mean difference. If we use the pooled SD from the two studies to back-transform 

the combined SMD, the pooled SD could be calculated as
2 26.07 *50 7.53 *30

6.65
30 50

, and 

the back-transformed mean difference is -4.5 (95% CI -5.9, -3.1) on the PACS scale.  

Caveats on Using Standard Mean Difference  
Synthesis of multiple scales adds complexity to the use and interpretation of SMD. Here are a 

few caveats investigators should consider when using SMD.  

Sample variance heterogeneity. Some studies have identified bias associated with using 

SMD in heterogeneous studies and studies with large SD.
55

 Inverse variance weighted SMD 

could produce a biased estimate of the mean SMD since the weight is a function of the observed 

SMD. Because the SMD is greatly influenced by the SD, factors affecting the SD will affect the 

SMD. Though SDs are not directly comparable when different measurement scales are used, if 
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there are meaningful differences in variance across studies due to factors such as different 

inclusion criteria (e.g., one study includes only severely depressed participants, while another 

includes participants with mild, moderate, and severe depression), especially for the subset of 

studies using the same scale, then these differences in variance due to populations will affect the 

SMD.  

The bias associated with the use of SMD is small when the true variance is small relative to 

the effect being estimated.
55

 However, investigators should examine sample variance 

heterogeneity when combining SMDs across studies and evaluate how these differences could 

affect the meta-analysis. In studies using the same scale, this can be accomplished by doing 

subgroup analyses based on the magnitude of the SD. Subgroup analyses can also be done by 

grouping studies according to inclusion criteria. For example, in each subgroup, only SMDs from 

homogeneous populations should be combined (e.g., combining all studies limited to severely 

depressed participants, and comparing results to those from studies including mildly or 

moderately depressed samples). If subgroup analyses suggest that results differ, then SMDs 

should not be combined across all studies with heterogeneous populations. 

Covariates. Studies may account for the effect of covariates. When combining SMDs, SMDs 

calculated using the unadjusted mean difference
56

 should not be combined with SMDs adjusted 

for covariates if there is heterogeneity between the two sets of SMDs. For SMDs calculated from 

mean difference adjusted for covariates, investigators should consider combining only results 

with a similar degree of adjustment (e.g., adjusted for similar covariates) to ensure comparable 

effect size across studies. Otherwise, the combined estimate may be biased. If a study uses 

balanced groups based on important covariates (e.g., if it has achieved balance through adequate 

randomization), and another study adjusts for these same covariates, these two studies could be 

considered as having a similar degree of adjustment and could be combined in a meta-analysis. 

Directionality. Note that the direction of the scale must be consistent across the scales used 

in the included studies. For example, if in one study a high score indicates depression and in 

another study a low score indicates depression, then one of the scores must be reverse-coded to 

account for scale direction differences. Investigators should assure that scales are converted to a 

consistent direction of effect across all studies when calculating SMD. 

Missing standard deviation. Information from the SD is required when calculating SMD. 

When the SD is missing, investigators can use imputed SD; Furukawa et al.
57

 showed that 

studies using imputed SDs produced similar results to studies using known SD values. Furukawa 

et al. also discussed how imputing SD applies to SMD, and more information on imputing SD is 

provided in the above section “Dealing with Missing Data.” 

Multiplicity of data. Studies often report data from outcomes based on multiple measures 

from multiple time points, an important source of possible bias in meta-analysis.
58

 For example, 

one trial may assess an outcome using five measures assessed at three time points; the results 

may be published in four separate articles. Investigators should establish a priori inclusion 

criteria regarding which outcomes and time points should be used in a meta-analysis and make 

sure that all outcome measures meeting inclusion criteria are included. Outcome measures 

should not be excluded on the basis of statistical significance, direction of effect, or magnitude of 

effect, since such exclusions would result in selection bias. Investigators must also make sure 

that only one outcome measure is included in a single meta-analysis. Sensitivity analyses may be 

conducted to assess the impact of the different measures (for the same outcome) on the combined 

estimate. In addition, investigators should note that the multiplicity of data is a potential issue for 
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all continuous outcomes. This applies to other effect measures, including mean difference and 

RoM.  

Ratio of Means  
Mean difference or SMD have been the most commonly used measures in meta-analysis for 

continuous outcomes. Recently, RoM
1, 2

 was proposed as an alternative. This measure offers the 

advantage that it can be used regardless of the units used in the individual trials. As with SMD, 

RoM can be used to combine outcomes that are measured using different scales. RoM can be 

interpreted in terms of the percentage change of the intervention group from the control group. 

The RoM is calculated by dividing the mean outcome value from the intervention (or 

treatment) group ( TX ) by the mean outcome value from the control group ( CX ). For meta-

analysis, the natural logarithm of each trial’s RoM and its SE are calculated using the mean 

values, number of participants (n), and SD in each group
2
 as: 

log(RoM) log                         (21)T

C

X

X
 

22

1 1
log(RoM)                 (22)CT

T T C C

SDSD
SE

n X n X
 

Then the natural logarithm transformed ratios are combined across studies using the standard 

inverse variance method. A combined ratio and its 95% confidence interval could be obtained by 

back-transforming the combined log-transformed ratio and its 95% confidence interval: 

 

RoM exp(log(RoM) )           (23)

95% Confidence Interval:  exp log(RoM) 1.96 (log(RoM) )          (24)

pooled

pooled pooledSE  

This method can be employed using a free meta-analysis software package called 

COMPARE2.
59

  

RoM has a straightforward interpretation and expresses the percentage change in the mean 

value of the intervention group relative to the control group. The results are in a relative form 

similar to the risk ratio: For example, if the combined RoM is 1.15, it means that the mean of the 

intervention group is 15 percent higher than the control group; if the combined RoM is 0.85, then 

the mean of the intervention group is 15 percent lower than the control group. 

In simulation studies,
2
 RoM has shown comparable statistical performance to mean 

difference methods in terms of bias, coverage probability, and statistical power. Overall, the data 

suggest that RoM is a reasonable alternative. Further data from an empirical analysis of 232 

clinically diverse published meta-analyses
1
 have confirmed the findings of simulated data, and 

this study suggests that, on average, RoM produces similar effect estimates, and SMDs of 0.2, 

0.5, and 0.8 corresponded to increases in mean of 8, 22, and 37 percent, respectively. There was 

less heterogeneity in meta-analyses using RoM compared with mean difference but more 

compared with SMD. 

Several meta-analyses have used RoM.
60-63

 One study
62

 utilized the RoM method when 

included studies reported various units of dosing for analgesics for a meta-analysis of total 

analgesic used within a postoperative period. Traditional methods would require standardizing 

all analgesic doses (i.e., conversion to “morphine equivalent”), which was not possible in all 
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cases since not all analgesics have a reliable equivalence ratio. The treatment effect of 

cumulative analgesics used was therefore expressed as RoM in the experimental versus the 

control groups. 

In summary, RoM appears to be a reasonable alternative to the traditional effect measures of 

continuous outcomes based on empirical evidence. Therefore, investigators may choose RoM as 

an effect measure when appropriate. When the outcome is assessed using different scales, RoM 

is easier to interpret than SMD. RoM has no units and allows for pooling of the studies expressed 

in different units; RoM also facilitates comparisons regarding relative effect sizes across 

different interventions. On the other hand, investigators should note that RoM can only be used 

in scenarios where the mean values of the intervention and control groups are both positive or 

both negative. Caution is warranted when RoM is used for small trials with large SDs and large 

effect sizes. Similar to the limitation of SMD for small trials, the combined estimate of RoM 

biases towards no effect, and this bias is accentuated by high heterogeneity. 

Dichotomizing Continuous Outcomes in Meta-Analyses 
For some continuous outcomes, a meaningful clinically important change is often defined, 

and patients achieving such change are considered as “responders.”
64

 There are methods 

developed to convert effect measures for continuous outcomes to effect measures of binary 

outcomes;
65, 66

 however, understanding the relationship between continuous effect measures and 

proportion of “response” is not straightforward. The assumptions used to assess such 

relationships are usually difficult to verify,
66

 and the results could be sensitive to underlying 

assumptions.
65

 Further research is necessary, and we currently recommend against inferring 

response rate from a combined mean difference.  

Conclusion 
In this report, we have provided recommendations on relevant topics applicable to 

quantitative synthesis of continuous outcomes measured in RCTs. The key points and 

recommendations for each topic are summarized in Table 2. Investigators are encouraged to 

follow these recommendations to improve the quality, transparency, and consistency of 

quantitative synthesis. The recommendations will be updated with the development of new 

research and methods, and new topics will be added when needs arise. 

  
Table 2. Summary of key points and recommendations for quantitative synthesis of continuous 
outcomes in comparative effectiveness reviews 

Methods for Quantitative 
Synthesis of Continuous 
Outcomes 

Key Points and Recommendations 

Inclusion of continuous outcomes  Investigators should establish a priori inclusion criteria regarding which 
outcomes and time points should be used in a meta-analysis and make 
sure that all outcome measures meeting inclusion criteria are included. 
Outcome measures should not be excluded on the basis of statistical 
significance, direction of effect, or magnitude of effect. 

Mean difference  Mean difference should be used if results are reported using the same or 
similar scales. 

 There are three major estimates for mean difference: (1) mean difference 
of followup score, (2) mean difference of the change score, and (3) the 
ANCOVA estimate. 

 Estimates from options 1, 2, or 3 could be combined in one single meta-
analysis. 
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Methods for Quantitative 
Synthesis of Continuous 
Outcomes 

Key Points and Recommendations 

Assessment of baseline imbalance  Investigators should assess baseline balance of included trials in 
quantitative synthesis. 

 Assessing baseline balance based on statistical testing of homogeneity 
among treatment groups for individual trials is not generally 
recommended. 

 There are no concrete criteria to determine balanced versus imbalanced 
distribution and the decision could be subjective. The actual differences 
between baseline measurements, clinically important differences, and the 
direction of the imbalance are important considerations. 

 When the decision is not readily clear cut, the investigators should 
conservatively consider the baseline scores to be imbalanced. 

Choice of estimates for mean 
difference under no or minimal 
baseline imbalance 

 Estimates from options 1, 2, or 3 are all unbiased and appropriate to use.  

 The investigators should first use an ANCOVA estimate. If it is not 
reported and investigators could obtain the mean difference based on both 
options 1 and 2 (see Mean difference above), use the estimate that has a 
smaller SE. Otherwise, use either option 1 or 2 based on the available 
reported data of the included study.  

 The investigators may choose to use the same estimate across studies in 
one meta-analysis.  

 Data on standard deviation or standard error may not be reported but 
often can be calculated or imputed. 

Choice of estimates for mean 
difference under baseline 
imbalance 

 The ANCOVA estimates are least biased with more precision, and they 
are preferred. Options 1 and 2 provide biased estimates. 

 The investigators should first use ANCOVA estimates, and if they are not 
reported, the investigators should conduct analyses using both estimates 
and report the more conservative combined estimate, which is usually the 
one with a smaller absolute effect size.  

 If enough trials in a meta-analysis reported ANCOVA estimates, the 
investigators are encouraged to conduct subgroup analyses to compare 
results from ANCOVA versus non-ANCOVA estimates as sensitivity 
analyses. 

Calculation of standard deviation 
and standard error 

 Depending on the software package used, either standard deviation or 
standard error will be required from each study in order to be included in 
the meta-analysis.  These quantities are often not given directly, but can 
be easily computed from confidence intervals, exact p-values, z-statistics, 
and t-statistics. 

 Studies with a crossover design or a cluster-randomized design have 
design effects that must be taken into account when computing their 
standard errors. Ignoring this design effect will tend to overestimate 
standard error for crossover studies and underestimate it for cluster 
randomized studies. 

Dealing with missing data  In general, studies containing information on point estimate but missing 
data on standard deviation or standard error should be included in a meta-
analysis using imputed standard deviation or standard error. 

 Whenever possible, as a first recourse, contact study authors to obtain 
missing data. 

 If authors cannot provide information on missing data, investigators should 
perform imputation of standard deviation. 

 There is no consensus as to which method of imputation is best, and most 
methods tend to give similar results.  Sensitivity analyses can be 
performed to check the robustness of results in regards to the choice of 
imputation methods. 
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Methods for Quantitative 
Synthesis of Continuous 
Outcomes 

Key Points and Recommendations 

Dealing with skewed data  Assess whether a variable may be skewed, based on substantive 
knowledge of the variable and any available data. If possible, the 
approach described in Altman and Bland46 should be applied. 

 If approximate symmetry could be assumed for a variable and 
nonparametric summaries are reported in the included trials (e.g., median, 
interquartile range, range), estimate the mean and standard deviation from 
nonparametric summaries for use in meta-analysis. 

 If a variable is skewed, transform the data to reduce skewness, for 
example, via a logarithmic transformation, and conduct the meta-analysis 
on the transformed scale. 

 Conduct sensitivity analysis to assess how robust conclusions are in 
regards to different transformations and other methodological choices. 

Standardized mean difference  Standardized mean difference should be used if included studies use 
different continuous scales to measure the same outcome. 

 Hedges’ unbiased estimator and Hedges’ g are generally preferred. When 

variance across the groups differs and the control group may be a more 

accurate estimate of true population variance, Glass’  is preferable. 

 SMDs of 0.2, 0.5, and 0.8 correspond to small, medium, and large effects. 

 Investigators should back-transform the pooled SMD to the original scale 
to facilitate assessing the clinical importance of the combined estimate. 

 Investigators should consider the impact of sample variance heterogeneity 
and degree of covariate adjustment when combining SMD. 

 Investigators need to make sure that the directions of the included scales 
are consistent. 

 When SD is missing, investigators could use imputed SD. 

Ratio of means  Investigators could choose RoM as an alternative option for meta-
analyzing continuous variables assessed using different scales in the 
same direction.  

 RoM should be used with caution for small trials with large standard 
deviations and larger effect size. 

Dichotomizing continuous 
outcomes in meta-analyses 

 We currently recommend against inferring response rate from a combined 
mean difference. 

RoM = ratio of means, SD = standard deviation, SE = standard error, SMD = standard mean difference
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Abbreviations 
ADHD Attention deficit hyperactivity disorder 

ANCOVA Analysis of covariance 

DBD Disruptive behavior disorder 

ECBI Eyberg child behavior inventory 

EPC Evidence-based Practice Center 

MCAR Missing completely at random 

MAR Missing at random 

MNAR Missing not at random 

PACS Parental account of childhood symptoms 

PBT Parent behavior training 

RCT Randomized clinical trial 

RoM Ratio of means 

SD Standard deviation 

SE Standard error 

SMD Standardized mean difference 



 

A-1 

Appendix A. Search Strategies 
 

Standardized Mean Difference 

Ovid Medline (Date Searched 3/8/2012) 

1 (standardized adj1 mean adj1 difference).ti,ab.  532  

2 meta-analysis as topic/  12130  

3 meta-analys$.ti,ab.  41814  

4 exp statistics as topic/  1697404  

5 meta-analysis.sh.  33853  

6 2 or 3 or 5 59871  

7 1 and 4 and 6 79  

 

Current Index to Statistics (Date Searched 2/22/2012) 

      Keyword search using combinations of standardized mean difference 

 

Baseline Imbalances 

Ovid Medline (Date Searched 2/22/2012) 

1 

((imbalance* or balance* or distribution) and (pre-treatment or pretreatment or baseline or 

pre-intervention or preintervention or covariat*)).ti,ab.  
18981  

2 exp clinical trials as topic/ 255550  

3 meta-analysis as topic/ 12130  

4 "review literature as topic"/ 4314  

5 exp "bias (epidemiology)"/  45684  

6 exp "analysis of variance"/ 237153  

7 ((analys$ adj3 covarian$) or ANCOVA).ti,ab.  8690  

8 data interpretation, statistical/ 42335  

9 3 or 4 or 5 or 6 or 7 or 8  338233  



 

A-2 

10 1 and 2 and 9  210  

 

Current Index to Statistics (Date Searched 2/22/2012) 

      Keyword search using combinations of (imbalance* or balance* or distribution) and (pre-

treatment or pretreatment or baseline or pre-intervention or preintervention or covariat*) 

Scopus  

      Pearling search to identify additional relevant citations from relevant articles already 

identified. 

 

Meta-analysis of Skewed Data 

     Ovid Medline (Date Searched: 3/8-20/2012), Current Index to Statistics, Scopus 

We took the Higgins article (Higgins, White and Anzures-Cabrera, "Meta-analysis of skewed 

data: combining results reported on log-transformed or raw scales." Stats in Med 2008; 27:6072-

6092.) as a starting point but were unable to define a subject search that worked, so we did a 

combination of keyword and pearling searches in Ovid Medline, Current Index to Statistics, and 

Scopus.   

 

Means Ratios in Pooled Analyses and Categorizing for Continuous Outcomes 

     We searched Ovid MEDLINE(R) <1946 to January Week 4 2012> and PubMed on March 1
st
 

2012 for (Dichotomis* or Dichotomiz*) limited to: Humans, Meta-Analysis, and English.  We 

searched Web of Science for articles citing either of 2 known studies: 

1. Fu R, Gartlehner G, Grant M, et al. Conducting quantitative synthesis when comparing 

medical interventions: AHRQ and the Effective Health Care Program. Journal of Clinical 

Epidemiology. 2011;64(11):1187-97. 

2. Friedrich JO, Adhikari NK, Beyene J. The ratio of means method as an alternative to 

mean differences for analyzing continuous outcome variables in meta-analysis: a 

simulation study. BMC Med Res Methodol. 2008;8:32. PMID: 18492289.) 

 in combination with a known author/expert (Friedrich, JO). Experts and reviewers also 

 recommended references based on experience and reference list checking. 
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